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a b s t r a c t

Monitored contaminants in drinking water represent a small portion of the total compounds present,
many of which may be relevant to human health. To understand the totality of human exposure to
compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully
characterize the drinking water exposome, point-of-use water filtration devices (Brita® filters) were
employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina
homes. A suspect screening analysis was performed by matching high resolution mass spectra of un-
known features to molecular formulas from EPA's DSSTox database. Candidate compounds with those
formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub
for approximately 720,000 compounds. To prioritize compounds into those most relevant for human
health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as
well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample
detection frequency and abundance to calculate a “ToxPi” score for each candidate compound. From
~15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the
highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical
standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out
of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring,
highlighting major gaps in our understanding of drinking water exposures. General product-use cate-
gories from EPA's CPCat database revealed that several of the high priority chemicals are used in in-
dustrial processes, indicating the drinking water in central North Carolina may be impacted by local
industries.

Published by Elsevier Ltd.
1. Introduction

Safe drinking water supplies are critical for public health and it
has been estimated by theWorld Health Organization (WHO) that a
10% reduction in worldwide disease could be achieved by im-
provements related to drinking water alone, including sanitation,
hygiene, and water resource management (Prüss-Üstün et al.,
2008). Furthermore, it is estimated that 70e90% of disease risks
e by Maria Cristina Fossi.
am, NC 27709, United States.
n).
ngle Park, NC 27709, United
are due to differences in environments (Rappaport and Smith,
2010), which includes direct exposures via consumption of drink-
ing water. Chemicals that are present inwater supplies can increase
risk for disease and adverse health outcomes over long-term
exposure periods (WHO, 2013). It has been demonstrated for
various chemical classes, including perfluorinated chemicals, that
drinking water can be one of the most important pathways for
human exposure (Egeghy and Lorber, 2011; Lorber and Egeghy,
2011). Even so, it has been estimated that only 40% of US con-
sumers used any kind of water purification device in 2014 (Anumol
et al., 2015). Certain chemicals are regulated under the Safe
Drinking Water Act, but these chemicals constitute only a small
fraction of the number of chemicals present in drinking water (US
EPA, 2016). New compounds can be added to this list if they are
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Table 1
Sample information.

Sample # Location Source Type Population Served

1 Durham Municipal 265,472
2 Durham Municipal 265,472
3 Apex Municipal 46,831
4 Cary Municipal 182,088
5 Chapel Hill Municipal 83,300
6 Chapel Hill Private Well e

7 Raleigh Municipal 540,000
8 Pittsboro Municipal 4,401
9 Pittsboro Private Well e
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discovered and deemed to pose a threat to human health. These
additions, however, require developing and validating “targeted”
methods, which is a slow and expensive process. Furthermore, this
process requires some a priori knowledge of the compounds for
which methods should be developed. As of yet, there is no reliable
mechanism to identify and prioritize novel compounds. There are
needs, then, for: 1) a more complete picture of chemical exposures
via drinking water consumption; 2) methods of rapidly identifying
emerging chemicals that may be of importance to human health;
and 3) means with which to properly assess exposure-disease re-
lationships and risks to human health (Villanueva et al., 2014).

Recent advances in analytical techniques have led to the
detection of various contaminants in water which would have
otherwise gone undetected using traditional targeted methods
(Schymanski et al., 2015; Strynar et al., 2015). These advanced
techniques often employ high resolution mass spectrometry
(HRMS), or tandem HRMS, to either match unknown sample fea-
tures to compounds within spectral and/or spectra-less databases
(a technique known as suspect screening analysis [SSA]), or eluci-
date structures of unknowns that may not be contained in a data-
base (a technique known as non-targeted analysis [NTA]). While
these two techniques differ, they are often discussed together as
they are complimentary to each other. SSA/NTA workflows are
rapidly evolving, and are becoming more frequently used to detect
differences (or similarities) between two or more groups of sam-
ples in case-control style experiments. Example applications
include: detecting a chemical spill in a river after a baseline
chemical signature has been established (Bader et al., 2016); eval-
uating the contribution of various tributaries to a river (Ruff et al.,
2015); or singling out unknown features that appear in landfill
leachate and in downstream drinking water (Müller et al., 2011).

SSA/NTA approaches may also be applied to environmental
samples in support of general monitoring e that is, to broadly
screen for the occurrence of chemicals in a selected medium. The
ability to rapidly identify unknown compounds during routine
monitoring is essential to fully explore the exposome, defined as
the sum of all exposures (exogenous and endogenous) for an in-
dividual over a lifetime (Wild, 2005). In order to sequence the
exposome, it is useful and necessary, from an analytical standpoint,
to compartmentalize exposures by matrix. Examples of monitoring
studies that focus on a specific matrix can be found for dust (Rager
et al., 2016), river water (Schymanski et al., 2015), waste water
(Schymanski et al., 2014b), etc. but drinking water remains rela-
tively unexplored with regards to SSA/NTA. This is somewhat sur-
prising, as drinking water is a fairly simple matrix to which humans
are exposed in similar amounts, in contrast to dust or waste water,
which require clean-up steps after extraction, and for which
exposure amounts are not well known.

When applied to environmental and biological samples, SSA/
NTA methods have the potential to allow rapid chemical charac-
terization without the need for standards or a priori knowledge of
sample constituents. Confidence in the identification of unknowns
can be communicated in terms of levels outlined by Schymanski
et al. (2014a), where the highest level of confidence (level 1) re-
quires confirmation by an analytical standard, and the next level of
confidence (level 2) requires evidence for a probable structure. A
goal for researchers using SSA/NTA methods should be to confi-
dently classify as many unknowns as possible into level 2, and not
necessarily level 1, as it is not practical, or even possible, to confirm
all unknowns with analytical standards. Chemicals of highest
concern can then be confirmed with standards, if possible, and
categorized into level 1. Confidence in level 2 identifications will
most likely come about through the development of several
different tools that build increasing confidence of positive detec-
tion. As we are in the early years of a burgeoning exposomics field,
researchers must find ways to prioritize unknowns into those that
they believe are most likely to be relevant to human and environ-
mental health (Sobus et al., 2017). Recently, a method to prioritize
the vast number of unknowns in a sample by incorporating toxicity
and exposure information was presented by Rager et al. (2016). We
have sought to apply this method to drinking water in the Raleigh/
Durham/Chapel Hill area of North Carolina, United States, and
improve upon it using tools and data available from EPA's CompTox
Chemistry Dashboard (hereafter referred to as “the Dashboard”,
https://comptox.epa.gov/dashboard), a newly developed web
application that supports SSA/NTA workflows (McEachran et al.,
2017b). We have also sought to demonstrate that SSA/NTA
methods can rapidly identify contaminants in drinking water that
are not routinely monitored and would likely go undetected
without these methods.

2. Materials and methods

2.1. Materials

Information about the materials used in this study can be found
in the Supporting Information (SI).

2.2. Sample collection

Samples were collected in a pilot scale study by installing a
Brita® Basic Faucet Filter in the homes of nine North Carolina res-
idents. Provided in the SI is a list of chemicals that Brita® Basic
Faucet Filters are known to remove from drinking water (SI,
Table S1), as well as a table of organic chemicals included in the Safe
Drinking Water Act (Table S2). Some residents received drinking
water from their local municipalities, while other residents
received their drinking water from a private well. Information
about the water source and municipality can be found in Table 1.
Although the samples are labeled by location, many of the drinking
water treatment facilities report purchasing water from other fa-
cilities so it is possible the sampling location is not fully indicative
of the original drinking water source. The study participants were
asked to use the filter for cold water during everyday use until the
indicator light on the filter turned red, signaling that the filter was
at its maximum capacity. This process took between 1 and 4
months for each sample with an average sampling time of 68 days.
The participants were asked to return their filters for analysis upon
seeing the red indicator light.

2.3. Sample extraction and processing

The filter was removed from the plastic casing using a band saw
with a clean blade and placed into a plastic bag for storage until
extraction. The filters were individually lyophilized for three days
to remove any water which remained in the filter pores. The filters
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were extracted via Soxhlet using 300 mL of an dichlor-
omethane:methanol (80:20 v/v) mixture for 24 h. Upon comple-
tion, the flasks were cooled for 30 min before the solvent was
removed under reduced pressure using a rotary evaporator. The
extract was re-dissolved in 5 mL of methanol, centrifuged at
12,500 � g for 3 min to remove particles from suspension. One-
hundred mL of sample was mixed with 300 mL of 2 mM ammo-
nium acetate buffer in an autosampler vial for analysis.

2.4. Instrumental analysis

Liquid Chromatography (LC) - Time-of-Flight (TOF) HRMS
analysis was carried out using an Agilent 1100 HPLC (Agilent
Technologies, Palo Alto, CA), interfaced with an Agilent 6210 TOF
HRMS. Chromatographic separation was accomplished using an
Eclipse Plus C8 column (2.1� 50mm, 3.5 mm; Agilent Technologies,
Palo Alto, CA). The method consisted of the following conditions:
0.2 mL/min flow rate; column at 30 �C; mobile phase A as ammo-
nium formate buffer (0.4 mM) and DI water:methanol (95:5 v/v),
and mobile phase B as ammonium formate (0.4 mM) and meth-
anol:DI water (95:5 v/v); gradient: 0e25 min linear gradient from
75:25 A:B to 15:85 A:B; 25e40min a linear gradient from 15:85 A:B
to 100% B; 40e45 hold at 100% B. The TOF-HRMS was fitted with an
electrospray ionization source, which operated in both negative
and positive ionization modes (separate injection for each mode),
using a fragmentor voltage of 80 V. Datawas collected in 4 GHz high
resolution mode, collecting ions in m/z range 100e1700 in both
centroid and profile data formats. Further details on instrumental
parameters can be found in Table S3 (SI).

2.5. Molecular feature detection and chemical formula assignment

Molecular feature extraction and formula assignment was per-
formed according to previously published methods (Rager et al.,
2016). Briefly, molecular features (defined as an exact mass,
retention time, and isotope cluster of an apparent unknown com-
pound) were identified and extracted using Agilent MassHunter 6.0
Qualitative Software's molecular feature extractor (MFE). Features
were extracted from themethod blanks and solvent blanks first and
the masses of those features were used in a “mass exclusion list”
when extracting features from the samples. MassHunter was then
used to match molecular features from the samples to chemical
formulas contained in EPA's Distributed Structure-Searchable
Toxicity database V2 (DSSTox_V2). This database contains a list of
16,532 unique formulas (de-salted) which correspond to 33,659
chemicals. Feature matches were scored based on neutral accurate
mass, isotope distribution, and isotope ratio. While DSSTox_V2
contains chemical compounds, it was used only to assignmolecular
formulas since isomers cannot be distinguished using the methods
described here (which consider molecular MS spectra only). Newer
versions of the DSSTox database, including the version which is
accessed by the Dashboard (approximately 760,000 as of November
2017), contain many more chemicals; however, the de-salted forms
of the molecular formulas were not available at the time the
database matching for this study was conducted. Molecular for-
mulas were only assigned to features which attained a match score
of �90. Further details on the software settings for the MFE and
database search can be found in Table S3 (SI).

2.6. Assignment of probable structure from molecular formulas

The workflow for assigning structures to formulas and priori-
tizing those structures is shown in Fig. 1. Candidate structures
associated with molecular formulas were retrieved from the
Dashboard using the Batch Search capability (https://comptox.epa.
gov/dashboard/dsstoxdb/batch_search). In this manner, the most
likely candidate structures are retrieved and ordered by the num-
ber of data sources associated with each structure. Data sources in
this context represent the number of times an EPA dataset, data-
base, or list within DSSTox contains a particular chemical. This
workflow follows previous reports on the identification of “known
unknowns” by Little et al. (2012). Additionally, it has been
demonstrated using the EPA Dashboard that candidate compounds
with the greatest number of data sources are the correct compound
for a given formula in over 80% of cases (McEachran et al., 2017b).
Bioactivity and exposure data for some of these structures were
available from the Tox21/ToxCast (US EPA, 2015) and ExpoCast
(Wambaugh et al., 2013) projects, respectively, and accessible via
the Dashboard. Compounds for which toxicity and exposure data
were available were labeled as “Group A” compounds, whereas
compounds missing one or both of these data types were labeled as
“Group B”. Multiple candidate compounds often existed for a given
formula, with some being Group A compounds and some being
Group B compounds. For Group A compounds, a bioactivity ratio
was calculated as the number of assay hits divided by the total
number of assays tested. Exposure categories were calculated from
ExpoCast daily exposure estimates using the categorization
described by Rager et al. (2016):

Category 1 <1 � 10�8 mg/kg/day;

Category 2 �1 � 10�8 mg/kg/day and <1 � 10�7 mg/kg/day;

Category 3 �1 � 10�7 mg/kg/day and <1 � 10�6 mg/kg/day;

Category 4 �1 � 10�6 mg/kg/day and <1 � 10�5 mg/kg/day;

Category 5 �1 � 10�5 mg/kg/day and <1 � 10�4 mg/kg/day;

Category 6 �1 � 10�4 mg/kg/day and <1 � 10�3 mg/kg/day; and

Category 7 �1 � 10�3 mg/kg/day and <1 � 10�2 mg/kg/day.

A ToxPi score was calculated for each Group A compound (i)
using its bioactivity (B) ratio, exposure category (E), detection fre-
quency (DF), and abundance (average chromatographic peak area,
A), according to equation (1). All values for E, DF, and A were log-
transformed before applying equation (1) due to the skewed na-
ture of their distributions.

ToxPi Score ¼ Bi � Bmin

Bmax � Bmin
þ Ei � Emin

Emax � Emin
þ DFi � DFmin

DFmax � DFmin

þ Ai � Amin

Amax � Amin

(1)

Equal weight was given to each category despite the precedent
of weighting some categories differently (Rager et al., 2016).

All compounds were further subcategorized with a “1” if the
compound had the highest number of data sources for its formula,
or a “2” if it did not. Compounds in Group A were also sub-
categorized with a “a” if the compound had the highest ToxPi score
for its formula, and a “b” if it did not. Thus, all compounds fell into
one of six categories: A1a, A2a, A1b, A2b, B1, or B2 (Fig. 1), with A1a
compounds being the most likely structures and highest ToxPis for
their formulas and thus the highest priority group.
2.7. Literature search

Three databases were searched to assess the prevalence of A1a
compounds in the literature: SciFinder®, Google Scholar, and
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Fig. 1. Workflow for processing data and categorizing candidate compounds.
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PubMed. As described in Rager et al. (2016), the SciFinder® search
(SciFinder, 2017) was performed to determine whether the A1a
chemicals have previously been reported as being detected in wa-
ter. Each chemical's CASRN was searched by the term “water”
within the SciFinder® “Research Topic” menu. The results were
then refined to only include journal references and the number of
results was recorded. The Google Scholar and PubMed searches
were conducted using the same search terms and no filters were
applied. All searched were conducted manually. This literature
search was not meant to be exhaustive, but rather to provide some
indication of each compound's relative prevalence in the literature
and association with water.
2.8. Retention time prediction using OPERA-RT

OPERA-RT is quantitative structure property relationship (QSPR)
model that is part of OPERA, a free and open-source suite of models
used to predict physicochemical and environmental fate of organic
chemicals (download available on Github: https://github.com/
kmansouri/OPERA) (Mansouri et al., 2016). OPERA-RT was previ-
ously developed as described in McEachran et al. (2017a). The tool
uses molecular descriptors as input to predict LC retention times for
compounds and is based on the same LC method that was used in
this study. Retention times were predicted for A1a compounds and
awindowof ±10% of the total chromatographic run time (±4.5min)
was used to compare the observed retention time with the pre-
dicted retention time of the putative A1a identification. The tool
was used to increase confidence in the identification of A1a com-
pounds as recommended byMcEachran et al. rather than to exclude
compounds that fall outside their retention time window.
2.9. Product-use categories

Product-use categories for A1a compounds were taken from
EPA's CPCat database (Dionisio et al., 2015). These data can be
explored through the Dashboard. Principal component analysis
(PCA) was performed using a matrix of summed peak areas for A1a
compounds in specific samples (observations) and product-use
categories (variables). PCA plots were constructed using the caret
package (version 6.0e62) in the R programming language (version
3.3.1).
2.10. Quality control and quality assurance

Calibration of the instrument was performed prior to analysis in
each mode. Any drift in the mass accuracy of the TOF was contin-
uously corrected by infusion of two reference compounds (purine
[m/z ¼ 119.0363] and Hexakis(1H,1H,3H-perfluoropropoxy)
phosphazene [identified in the Dashboard as DTXSID90880494,
observed as a formate adduct at m/z ¼ 966.0007]) via dual-ESI
sprayer. Three unused filters were processed along with the sam-
ples as method blanks. The masses of features observed in these
methods blanks were used in a blank exclusion list when extracting
features from samples. Solvent blanks were also analyzed consist-
ing of a mix of ammonium acetate buffer and methanol.
3. Results and discussion

Approximately 15,000 total features were detected across all
samples, with 10,606 found in positive mode and 4,317 in negative
mode. The greater number of positive mode features may have
been aided by the presence of Hþ ions from the slightly acidic
mobile phase. Positive mode features tended to be smaller in
chromatographic peak area, with the median peak area (190,000)
roughly half that of negative mode features (370,000). Four-
hundred and thirty features were matched to a formula in the
DSSTox_V2 database with a match score of 90 or greater. A greater
proportion of negative mode features was matched (4.2%) than
positive mode features (2.3%). Across both modes, 2.9% of features
werematched yet peak areas for these matched features comprised
16.9% of the total peak area of all features. The number of features
matched is similar to that reported by Rager et al. whomatched less

https://github.com/kmansouri/OPERA
https://github.com/kmansouri/OPERA


Table 2
Descriptive statistics of features, formulas, and A1a compounds between negative
and positive modes.

Ionization mode Negative Positive Total

Number of features 4,317 10,606 14,923
Average (SD) features per sample 480 (207) 1,178 (542) 1,658 (724)
Geometric mean peak area 420,000 230,000 270,000
Features assigned a formula 181 249 430
Unique formulas 166 231 270
Percent of features assigned a formula 4.2% 2.3% 2.9%
Percent peak area assigned a formula 12.8% 19.2% 16.9%
Features with A1a designation 74 74 148
Percent peak area of A1a compounds 8.2% 7.0% 7.4%
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than 2% of the total number of features in 56 dust samples but did
not report the percentage of peak area that was matched. The
median peak area of unmatched features was approximately
200,000 while the median peak area of matched features was
approximately 1.5 million (Fig. 2). This means that while the
number of features being matched is low, matching tends to favor
larger peaks. This is not surprising considering that larger features
are likely to contain better isotope peaks which play a crucial role in
matching to a formula (Kind and Fiehn, 2006). Another possible
explanation is that larger peaks tended to be compounds that have
been of interest previously and are therefore more likely to be
contained within the database from prior study by researchers.
Descriptive statistics for features and molecular formula matches
can be found in Table 2, and a bubble plot of all features with
retention time and m/z can be found in the SI (Fig. S1).

Kernel density plots showing the distributions of the masses,
volumes, and mass defects of features can be seen in Fig. 2. The
mass distribution of features matched to the database was heavily
biased towards the distribution of masses in the DSSTox_V2 data-
base. The percentage of features with masses less than 500 Da was
51% for all features, but increased to 90% for features assigned a
formula. This is likely due to the fact that 92% of compounds in the
DSSTox_V2 database have masses less than 500 Da. The same trend
was observed in the distribution of mass defects among features
assigned a formula, highlighting the importance of the content of
the databases used when performing suspect screening analysis.

Mass and elemental composition of the formulas generated in
this study (water filters) were compared to those of the previous
study of house dust by Rager et al. (2016) on the basis that the same
database and matching algorithm were used. Significant differ-
ences (Welch's two sample t-test, p < 0.001) in mass and number of
carbons per formula were observed between the studies, with the
house dust containing heavier compounds and 3.4 more carbons
per formula, on average, than the water filters. Oxygen and phos-
phorous were similar in the average number per formula and
Fig. 2. Kernel density plots of mass, peak area, and mass defects for negative, positive, mat
percentage of formulas in which they were found. Nitrogen, how-
ever, was found in 48% of the water filter formulas but only 34% of
the house dust formulas. Sulfur was found in 10% of the water filter
formulas but 29% of formulas from the house dust. Summary sta-
tistics on the elemental composition and mass distributions of the
formulas generated in the two studies can be found in the SI
(Table S4) as well as a PCA of the element counts, retention times,
and masses for each formula (Fig. S2). Despite the differences in
carbon, nitrogen, and sulfur content, no clear separation or patterns
were observed in the PCA.

The 430 features that were assigned a formula were comprised
of 270 unique formulas which generated 10,621 candidate com-
pounds from the Dashboard, giving an average of 39 compounds
per formula (range ¼ 1 to 451 compounds per formula). Each
candidate compound was then categorized into Group A, contain-
ing toxicity and exposure data, or Group B, not containing these
data. Of all candidate compounds, 205 contained were categorized
into Group A, 91 of which were sub-categorized into Group A1a,
which are considered the most likely compounds based on data
source rankings (McEachran et al., 2017b) as well as the most
important compounds with regards to bioactivity, exposure,
ched (i.e., formula assigned), unmatched features, and the entire DSSTox_V2 database.
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abundance, and detection frequency. The SciFinder® search resul-
ted in 59 of the A1a compounds being associated with water in
journal articles, meaning 32 have not been associated before with
water. Among those with associated journal articles, the average
number of articles was 569, highlighting the tendency for re-
searchers to publish on already-known compounds and the need
for more work in compound discovery. The PubMed search gave
similar results, with 66 compounds associated with water but the
Google Scholar search returned 90 compounds associated with
water.

The remaining 114 Group A compoundswere sub-categorized as
follows: 26 into Group A2a, 18 into Group A1b, and 70 into Group
A2b. Of the remaining 10,416 Group B compounds, 196 were sub-
categorized into Group B1 and 10,220 in Group B2. While the vast
majority of candidate compounds fall into Group B2, these com-
pounds are less likely to be the correct compounds for a given set of
matched formulas. Group A1a features tend to be larger than most
peaks: the median peak area of an A1a feature was approximately
1,900,000 counts whereas the median peak area of non-A1a fea-
tures that were assigned a formula was 1,300,000 counts, and the
median peak area of features that were not assigned a formula was
220,000 counts. Furthermore, 44% of the peak area that was
assigned to a formula could bemapped to an A1a compound, which
was 7.4% of the total peak area of all features. A list of all A1a
compounds along with their bioactivity and exposure values,
functional use information, results of the SciFinder® search, and
other supplementary data can be found in the SI (Table S5).

3.1. ToxPi scores and confirmation by standards

ToxPi scores for Group A1a compounds ranged from 0.046 to
2.99 out of a maximum possible score of 4. All A1a ToxPis scores are
displayed graphically in Fig. 3 with values given for the top 20. In
general, the contribution from the four different categories to the
total ToxPi score varied greatly from compound to compound.

To assess correct structure-to-formula assignments and confirm
compounds with standards, sample-based formulas were matched
with formulas for standards readily available in our laboratory.
Sixteen unique compounds had formulas matching those of exist-
ing laboratory standards. Thirteen of the standard compoundswere
categorized as A1a and three as B1. Of the three B1 compounds, no
group A compounds existed for those formulas. Fifteen of sixteen
compounds were ultimately confirmed with standards via reten-
tion time matching and visual inspection of MS spectra. One
compound did not match in retention time to its A1a-assigned
feature and was therefore considered to be a false positive although
its spectrum matched. The formula for this compound was
C12H20O7 and the standard with this formula was triethyl citrate.
Given the close spectral match but difference in retention time, the
sample likely contained an isomer of triethyl citrate. Triethyl citrate
was ranked by ToxPi score as 15th among A1a compounds, but
removed from Fig. 3 because it was confirmed to be a false positive.
All other compounds with this formula were classified as B2 com-
pounds. The twelve A1a compounds confirmed with standards as
true positives can be seen in Table S5 (SI), eight of which were
among the top 20 highest ToxPis and can be seen in Fig. 3. The three
B1 compounds confirmed with standards were Fipronil Sulfone,
Perfluorovaleric Acid (PFPeA), and Perfluorohexanoic Acid (PFHxS).
The 15 confirmed compounds have a range of log octanol-water
partitioning coefficients (log Kow) from 0.8 (1,2-Benzisothiazolin-
3-one) to 4.8 (Perfluoroundecanoic acid). The outer bounds of the
range of log Kow values for which this method is suitable cannot be
fully assessed due to the small number of confirmed compounds
but likely extends beyond this range.

The high percentage of correct structure assignments to
formulas as confirmed using standards demonstrates the utility of
data source ranking described in McEachran et al., where 88% of a
test set of 162 compounds ranked first by data source when using
the Dashboard (McEachran et al., 2017b). For the confirmed com-
pounds, 8 of the 15 were perfluoroalkylated substances (PFAS), two
were chlorinated phosphate flame retardants, and one was a
chlorinated pesticide (atrazine). The types of confirmed com-
pounds are a reflection of the types of available standards in our
laboratory and not necessarily representative of the types of com-
pounds actually contained in the samples (see section on Product-
Use Categories). The percentage of true positives (94%) relative to
false positives (6%) is considered very good for SSA and it increases
confidence in the method of prioritization but it must be
acknowledged that this success rate may not accurately represent
the rate of correct prioritization for the rest of the compound-
formula mappings due to the fact that standards were not
randomly chosen. The standards used in this study were readily
available in one of our laboratories and, thus, had previously been
purchased due to their environmental relevance.

Eight of the top 20 ToxPi compounds were confirmed with
standards, including the compound with the top ToxPi score, 1,2-
Benzisothiazolin-3-one. Over 500 product use entries are listed in
the EPA's CPCat database and the Consumer Product Information
Database (Consumer Product Information Database, 2017) lists it in
many products that are expected to go directly to waste water after
use such as hand soap, dish soap, detergent, etc. It was found in 7 of
the 9 drinking water samples and was active in 173 of 565 toxicity
assays tested. Although the SciFinder® search found 95 journal
articles associating this compound with water, it is not regularly
monitored for in drinking water and would not have been discov-
ered without an SSA approach.

3.2. Retention time prediction

As described by McEachran et al. (2017a), the OPERA-RT model
has a 95% confidence window of ±4.5 min. Of the 91 A1a com-
pounds, 52 were never observed outside this window giving us
greater confidence in the correct identification of these compounds
(SI, Table S5). These compounds include all 15 true positives that
were confirmed with standards. The predicted retention time for
triethyl citrate was within the 95% confidence window of the
observed feature that was mislabeled as this compound and, thus,
OPERA-RT would not have helped to identify this particular false
positive. Only through the use of an analytical standard were we
able to observe a difference in retention time large enough to
confidently label this peak as a false positive, yet small enough to
fall within the predicted retention timewindow fromOPERA-RT. To
date, the effectiveness and proper implementation of this retention
time tool has not been fully evaluated, however, it provides an
added layer of confidence for those compounds that fall within
their predicted window.

3.3. Product-use categories

All A1a compoundswere assigned to at least 1 of 15 product-use
categories, and some to several categories, as they may have
different functional uses. Thirteen of fifteen product use categories
contained at least one A1a chemical from the samples. Fig. 4 shows
the number of A1a compounds in each sample for a given category.
A PCA was performed using the sum of the peak areas of the
compounds represented in this matrix. The loadings plot from the
PCA is given in the SI (Fig. S3). The first principal component
explained 39.2% of the variance and the second explained 27.5%.
The two well water samples (Chapel Hill and Pittsboro) were
positioned very closely on the PCA score plot, indicating these



Fig. 3. ToxPis of all A1a compounds (bottom left) with the top 20 enlarged (top left) and their corresponding ToxPi scores (right).
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samples are very similar with regards to product-use categories.
Tap water from Apex and Cary plotted closely on the PCA as well,
which may be because these towns are very close in proximity and
share source water. One outlier on the PCA was the Pittsboro tap
water. This sample had the most number of features (3341
compared to an average of 1658 per sample), the most number of
formulas assigned to features (108 compared to an average of 48
per samples), and ultimately the most number of A1a chemicals
(38).

Besides the category “other”, the two categories with the most
number of A1a chemicals were “Industrial Process No Consumer”
followed by “Consumer and Industrial Process”, indicating that
drinking water in this area may be impacted by local industries.
Other top categories included those containing pesticides (“Pesti-
cide Active and Consumer”, “Pesticide Active No Consumer”, and
“Pesticide Inert”). The category “Personal Care Products” was also
significant, affecting 8 of the 9 samples.

3.4. Non-targeted analysis (NTA) of unmatched features

An exhaustive NTA is outside the scope of this article, however,
some work has been done on identifying features that were not
assigned a formula and therefore did not undergo the subsequent
steps of our SSA workflow. Emphasis was placed on a mass defect
range from �0.2 to 0 as this is indicative of halogenated organic
compounds which often contain unique isotope signatures and are
often of concern for public health. A focus was also placed on the
sample in which the most features was found, the Pittsboro tap
water. The most abundant and the fourth most abundant features
in the PittsboroTap sample that fell into themass defect rangewere
recognized as being decarboxylated perfluoroalkyl acids. We have
previously observed decarboxylation of perfluoroalkyl acids within
the ion source and fragments would not match to the DSSTox
database using this describedmethod. The second largest peak, m/z
564.8848, revealed a high degree of chlorination in its spectra and
was found to co-elute with m/z 518.8796, indicating the peak at m/
z 564.8848 is a formate adduct. These peaks were found in negative
ESI mode, meaning the peak at m/z 518.8796 likely results in the
loss of a protonmaking the neutral mass approximately 519.8869. A
chromatogram of these two peaks and the spectrum of the larger
peak (m/z 564.8848) is shown in Fig. S4 (SI). Formula generation
using MassHunter, which considers relative isotopic abundance
and spacing as well as exact mass for the isotope cluster beginning
at m/z 518.8796, produced C12H20Cl7O5P with a match score of 99.5
out of a possible 100. No compounds matching this formula were
found in public databases such as the Dashboard or PubChem;
however, a search using SciFinder® revealed one match for this
formula, (2-chloroethyl)-bis[2,2,2-trichloro-1-(1-methylethoxy)
ethyl] ester phosphonic acid (CAS 71039-43-5), shown in Fig. 5. This
compound is found in a patent and described, along with several
other chlorinated phosphonic acids, as plant growth regulators.
However, this compound is strikingly similar to other



Fig. 4. A) First (x-axis) and second (y-axis) principal components in a principal component analysis using summed peak areas for all compounds within a category; B) box and
whisker plots representing the range of peak areas for compounds within a category; C) box and whisker plots representing the range of peak areas for compounds within each
sample; and D) heat map showing the number of compounds that fall into each category by sample. Blank squares indicate no A1a compound was present for a category in a
sample.

Fig. 5. (2-chloroethyl)-bis[2,2,2-trichloro-1-(1-methylethoxy)ethyl] ester phosphonic
acid (CAS 71039-43-5), the only discovered structure matching the generated formula
of C12H20Cl7O5P for a large unknown peak at m/z 518.8796.
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organophosphate compounds, such as TDCPP, also found in this
study and commonly used as flame retardants. Further NTAwork to
identify features which were not assigned a formula will continue
using similar approaches as described here.

4. Limitations and future directions

The use of an activated charcoal filter to capture contaminants
from drinking water likely biased the experimental design towards
compounds with sufficiently large Kow values to interact with the
filter. It is possible that some compounds which may be of rele-
vance to human health, probably very polar compounds, passed
through the filter without capture and, thus, were not retained in
the samples. The instrumental analysis could have been expanded
in several ways to increase the percent of total features identified.
Alternative columns, such as HILIC, can be used to separate com-
pounds that elute in the void volume when using a C8 column.
Furthermore, additional ionization sources, such APCI or APPI,
could be used to ionize compounds that were not detected under
ESI conditions. Future studies should also consider including a gas
chromatography (GC) component to explore a larger chemical
space. At the time of formulamatching, only a limited version of the
DSSTox_Database (V2) was available in its de-salted form (de-sal-
ted formulas are required to match to mass spectral data). Since
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then, a much larger, more extensive version of the database has
become available in its de-salted formwhich includes over 720,000
chemicals and can be accessed via the Dashboard's downloads page
(https://comptox.epa.gov/dashboard/downloads). This increase in
size would have most likely resulted in a higher percentage of
features being assigned formulas. The current method was unable
to identify compounds which fragmented in the ionization source,
as was observed when the decarboxylated perfluoroalkyl acids
were identified. Another limitation to this study, as with most SSA/
NTA studies, is the inability to estimate concentration. Future
studies should exploreways of estimating instrument responses for
compounds without the use of standards. QSPRs appear to be the
most viable path to solve this problem. However, a large training set
of instrument responses based on chemical standards will be
required. Future studies should also focus on better inclusion of
tools to mount confidence in level 2 identification on the Schy-
manski scale, including better implementation of retention time
predictors, fragmentation predictors for MS/MS data, etc. In any
case, improved access to Open Data sets for integration into our
databases will be highly beneficial and the community is encour-
aged to consider the benefits of such an approach (Schymanski and
Williams, 2017).
5. Conclusions

Although there have been abundant research efforts directed at
identifying contaminants in drinking water, to the best of our
knowledge, this study is the first to use a point-of-use home filter
combined with an SSA/NTA approach. Its utility in this pilot scale
application is illustrated in our identification of several compounds
that would not otherwise bemonitored in drinking water. The need
for a more comprehensive SSA/NTA approach is highlighted by the
large number of features present in the samples, and the limited
number of which that were confirmed or tentatively identified.

We have demonstrated that ranking by data source correctly
prioritized (Group A1a or B1) 15 out of 16 compounds for which
standards were available on hand. Furthermore, ToxPi ranking
allowed focus to be placed on compounds of most relevance to
human health. Standards are still required for level I identification
according to the Schymanski confidence levels (Schymanski et al.,
2014a); however, confirmation of all prioritized candidate com-
pounds is impractical therefore researchers should focus on tools
that add confidence to level 2 identifications, such as retention time
predictors and in silico fragmentors. The retention time prediction
model used in this study (OPERA-RT) was unable to identify the one
false positive found and thus further development is necessary for
larger scale implementation of retention time prediction.

The number of chemicals in the A1a group is very small
compared to the number of features extracted, or total chemicals, in
the samples. The vast majority of these features are quite small and,
thus, may represent chemicals at trace levels. That being said, trace
levels of compounds may be of importance to human health. While
there was a great degree of variability in the number of features,
formulas, and Group A1a compounds in the samples, every sample
exhibited some degree of contamination. Given the wide range of
retention times and masses observed in this study, as well as the
sheer number of features observed, our results indicate that acti-
vated carbon point-of-use water filtration systems likely remove
compounds spanning a wide range of physicochemical properties.
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